Esercitazione 10 dicembre 2015 Matematica Applicata Ingegneria Biomedica

Patricia Díaz de Alba

1. Sia α un parametro reale e si consideri la seguente matrice

$$A = \left[\begin{array}{ccc} \alpha & 1 & 0 \\ 1 & \alpha & -1 \\ 0 & -1 & \alpha \end{array} \right].$$

Si dica per quali per quali valori del parametro α la matrice è invertibile e per quali è definita positiva. Si stabilisca, inoltre, per quali valori di α il metodo di Gauss–Seidel applicato al sistema Ax = b son $b = [1, 0, 1]^T$ risulta essere convergente. Posto $\alpha = 2$, si calcolino le prime due iterazioni del metodo di Gauss–Seidel usando il vettore iniziale $[0, 1, 0]^T$.

2. Si consideri il problema di Cauchy

$$\begin{cases} y'(x) = \frac{3x}{x - y} \\ y(-1) = 4, & x \in [-1, 0]. \end{cases}$$

Studiare l'esistenza locale e globale e calcolare un'approssimazione della sua soluzione nei punti $x_1 = -\frac{1}{2}$ e $x_2 = 0$ mediante il metodo alle differenze finite di Eulero con punto iniziale $x_0 = -1$ e passo $h = \frac{1}{2}$.

3. Trasformare il seguente problema del second'ordine

$$\begin{cases} y''(x) = -2y' + 3y \\ y(1) = 1, y'(1) = 0 \end{cases}$$

in un sistema del prim'ordine e calcolare i primi due passi $\{\eta_1, \eta_2\}$ del metodo di Eulero utilizzando il passo $h = \frac{1}{2}$.

4. Si consideri il seguente schema alle differenze finite

$$\eta_{k+1} = \eta_k + \frac{1}{2}h[f(x_k, \eta_k) + f(x_k + h, \eta_k + hf(x_k, \eta_k))].$$

Posto $h=\frac{1}{2},$ si applichi tale metodo al seguente problema di Cauchy per approssimare la sua soluzione nel punto x=3.

$$\begin{cases} y'(x) = x^2y - x \\ y(2) = 1, & x \in [2, 3]. \end{cases}$$